Facial reduction in partially finite convex programming
نویسنده
چکیده
We consider the problem of minimizing an extended-valued convex function on a locally convex space subject to a finite number of linear (in)equalities. When the standard constraint qualification fails a reduction technique is needed to derive necessary optimality conditions. Facial reduction is usually applied in the range of the constraints. In this paper it is applied in the domain space, thus maintaining any structure (and in particular lattice properties) of the underlying domain. Applications include constrained approximation and best entropy estimation. AMS 1991 Subject Classification: Primary 49K27, 90C48; secondary 90C34, 52A41
منابع مشابه
Functionally closed sets and functionally convex sets in real Banach spaces
Let $X$ be a real normed space, then $C(subseteq X)$ is functionally convex (briefly, $F$-convex), if $T(C)subseteq Bbb R $ is convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$ is functionally closed (briefly, $F$-closed), if $T(K)subseteq Bbb R $ is closed for all bounded linear transformations $Tin B(X,R)$. We improve the Krein-Milman theorem ...
متن کاملA numerical approach for optimal control model of the convex semi-infinite programming
In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.
متن کاملFourier synthesis via partially finite convex programming
A dual algorithm for problems of Fourier Synthesis is proposed. Partially finite convex programming provides tools for a formulation which enables to elude static pixelization of the object to be reconstructed. This leads to a regularized reconstruction-interpolation formula for problems in which finitely many and possibly irregularly spaced samples of the Fourier transform of the unknown objec...
متن کاملPartially finite convex programming, Part II: Explicit lattice models
In Part I of this work we derived a duality theorem for partially finite convex programs, problems for which the standard Slater condition fails almost invariably. Our result depended on a constraint qualification involving the notion of quasi relative interior. The derivation of the primal solution from a dual solution depended on the differentiability of the dual objective function: the diffe...
متن کاملOptimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 65 شماره
صفحات -
تاریخ انتشار 1994